Use the following information to answer questions 1 and 2.

A spring obeys Hooke's law. A force of 2.0 N extends the spring by 0.30 m.

- 1 A 6.0 N force will extend the spring by
 - 🖾 A 0.10 m
 - 🖾 **B** 0.30 m
 - 🖾 C 0.60 m
 - **□ D** 0.90 m

(Total for Question = 1 mark)

- 2 The energy stored in the spring when a force of 2.0 N is applied is
 - 🖾 A 0.09 J
 - **■ B** 0.30 J
 - 🖸 C 0.60 J
 - 🖾 **D** 0.90 J

3 A spring is suspended from a bar. When a load of 6.0 N is added to the bottom of the spring, its length changes from 0.040 m to 0.13 m.

To find the spring constant of the spring you would use

4 An apple is at rest on the ground.

The diagram shows three forces of equal magnitude.

W = weight of apple

P =push of apple on ground

R = normal contact force of ground on apple

Which row in the table shows Newton's first and third laws being applied correctly.

	Newton's first law	Newton's third law
A	P = W	R = P
B	R = P	W = R
C	W = R	P = W
D	W = R	R = P

5. The graph shows how extension varies with applied force for a spring.

- 5 The stiffness of the spring in Nm^{-1} is
 - A 1.5
 - **■ B** 54
 - C 67
 - **D** 150

Questions 6 and 7 refer to the graphs and information below.

A force is applied to a spring and the spring extends. The new length of the spring is recorded.

This procedure is repeated for different applied forces.

- 6 Which of the above graphs could be obtained from this experiment?
 - \square **A** P and Q
 - \square **B** P and S
 - \square **C R** and **Q**
 - \square **D** R and S

(Total for Question = 1 mark)

7 The graphs could show that the spring is

- A obeying Hooke's law.
- **B** extending plastically.
- \square C extended beyond the limit of proportionality.
- **D** being compressed as well as extended.

8 A force is applied across the ends of a spring and the following force-extension graph is drawn. Three points, P, Q and R, are marked on the graph. At point Q the applied force is zero.

In the table below, the spring is represented using diagrams drawn to scale. The spring at Q is represented by MMM.

Select the row from the table that correctly represents the length of the spring at positions P, Q and R.

	Р	Q	R
		(no applied force)	
A	www	$\mathcal{M}\mathcal{M}$	~~~~~
B	www	www	~~~~~
C	~~~~~	www	
D D	,www	www	www